skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fredrickson, Daniel C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this Article, we explore how the chemical pressure (CP) features of an intermetallic phase may provide opportunities to couple perturbations in electron count with the stabilization of the underlying geometrical structure. AuCu3‐type LnGa3 (Ln = lanthanide or group 3 metal) phases contain octahedral cavities of negative CP held open by overly compressed Ln–Ga interactions, leading to a series of transition metal‐stuffed derivatives. We present new additions to this family with the synthesis and crystal structures of Dy4T1−xGa12 with (T, x) = (Ag, 0.29) and (Ir, 0.15), adopting Y4PdGa12‐type superstructures of the AuCu3‐type. Density Functional Theory (DFT)‐CP calculations, when adjusted to avoid dipolar CP features, affirm that T atom incorporation provides a mechanism for the relief of packing tensions, while electronic density of states distributions illustrate that the T atoms serve largely as electron or hole donors to the band structure, as needed for them to attain d10 configurations. The maximum obtainable value for x may be limited by a mismatch between the Fermi energy and pseudogap, in line with the balance of factors envisioned by the frustrated and allowed structural transitions principle. Trends in resistivity measurements on T = Ir, Pd, and Ag compounds are interpretable in terms of the varying degrees of disorder arising from x< 1.0. 
    more » « less
    Free, publicly-accessible full text available July 22, 2026
  2. Free, publicly-accessible full text available December 24, 2025
  3. Like many complex intermetallic phases, the crystal structures of REZn5+xcompounds (RE = lanthanide or Group 3 element) based on the EuMg5type have gradually unfolded. The original reports described a complex hexagonal structure with an unusual combination of tetrahedrally close-packed regions and open spaces, as well as observations of superstructure reflections. More recently, we reinvestigated the structure of YZn5, reclassifying it as the EuMg5+x-type compound YZn5+x(x ≃ 0.2), in which disordered channels run alongcthrough the spaces formerly considered open. In addition, DFT-chemical pressure (DFT-CP) analysis of ordered models of YZn5+xhighlighted paths for communication between neighboring channels setting the stage for superstructure formation. Herein, the experimental elucidation of this effect is presented with the synthesis and structure determination of a modulated form of YZn5+x. By slow-cooling samples of YZn5+xfrom the annealing temperature, crystals were obtained that exhibit satellite reflections with the modulation wavevectorq= {1\over 3}a*+ {1\over 3}b*+ 0.3041c*. Structure solution and refinement using a (3+1)D model in superspace groupP31c({1\over 3}\,\!{1\over 3}σ3)00sreveals incommensurate order in the structure's channels. Here, two Zn sites associated with the channels are present, each with discontinuous atomic domains that are slanted in thex3x4plane. Their slanting corresponds to adjustments along thecaxis for the presence or absence of close neighbors along that axis, while the occupation patterns of neighboring channels are shifted by {1\over 3} of the modulation period. These features follow earlier predictions from CP analysis, highlighting how this approach can be used predictively in search of new phenomena. 
    more » « less